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Abstract. Wavefunctions of bosons each with angular momentum [ and Fispin § are classified
according to the group chain U2N )= (U{N)=O(N) 2 0(3)) x SU(2). The boson number,
seniority, reduced Fspin, total angular momentum, and total F-spin quantum numbers are
used to Jabel the wavefunctions. The corresponding ceefficients of fractional percentage
{cFp) are factorized into F-spin and angular momentum parts. The F-spin parts are calen-
alted by an analytical formula and the angular momentum parts are calculated by recursion
technigue. The isoscalar factors of U(ZN )= U(N)=O(N) and the F-spin part of the Crp
for the cases F=Fp,y and F=F,,,— | are given explicitly.

I. Introduction

The interacting boson model (18M) has been successful in describing nuclear structure
[1]. In ils original version (1BM1), which does not distingui.h the proton boson from
the neutron boson, the three kinds of nuclear collective motion can be described qguite
well. After the development of mBM1, version 1BM2, which treats the proton boson and
neuiron boson separately, was proposed. Since then, remarkable progress has been
made in both the theory and the agreement between the theoretical predictions and
experimental data [2, 3]. Now that the g-boson has been introduced, the well deformed
nuclei and higher excited states can be described, and the nuclear octupole deformation
is described by considering the f- and p-bosons [4-9}.

It is known that the coefficients of fractional parentage (cFp) [10-13] method is
one of the most efficient techniques for constructing the 1sm wavefunctions. Even
though much work has been undertaken in the study of nuclear physics, discussion of
the crp of iBm1 and especially the crp of 18M2 has been relatively meagre. Since
calculations of the cFp are quite time consuming, the working load of calculations for
some computer codes in the framework of the 18M is tremendously heavy. Moreover,
since CrP tables with large numbers of bosons are not available, calculations with large
number of bosons are not possible. These defects have limited the application domain
of tem. Recently, Sun and collaborators have put forward a simple formula to calculate
the cre of 1BM1 [14, 15]. A computer code based on the formula has also been set up
to determine the crp of 1M1 [16]. This computer code is quite efficient: it takes only
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20 minutes on the IBM 350 machine to obtain all the cre for a system including 36 d-
bosons. Il provides us with a convenient way to describe the nuclear superdeformed
states and chaotic behaviour of the boson system.

In fact, as the nuclear physics can be discussed in the framework of the 1BM, it is
usually recognized that 1Mz has a better microscopic foundation. It is certain that the
proton boson and the neutron boson should be treated separately in this case. However,
the configuration space is enlarged remarkably. It increases the difficulty of calculation
greatly, so that practical applications are limited. In order to restrict the configuration
space to a manageable size, it has usually to be truncated. If the wavefunctions are
classified by more physical quantum numbers such as seniority or F-spin, the configura-
tion space Is easier Lo truncate physically.

The F-spin, which for a boson system has a role similar to the isospin for fermions
has proved to be a good approximate quantum number [17, 18]. However, it was also
conjectured that some collective modes corresponding to the mixtures of states with
different F-spin values could arise [19]. The discovery of low-lying 17 states was believed
to be strong support for this conjecture [20]. Since then the question of the purity of
symmetry properties with the F-spin value = F,,,, has been studied guile extensively in
the vibrational, rotational and y-unstable rotor limits [21-25]. Nevertheless, most of
the real puclides lic in between the mentioned limits. Therefore, to carry out detailed
calculations for such transitional nuclides a phenomenological model with a reasonably
truncated model space is ceriainly needed. To construct n-boson wavefunctions with
F-spin, the cFP with F-spin need to be calculated.

In this paper, using the Lie group theory we discuss the classification of the wave-
functions of a boson system with a single angular momentum / and F-spin 3 according
to the group chain UQN)=(UN)>O0(N)=>0(3)) x SU(2). These wavefunctions are
simply those with a well-defined boson number, seniority, reduced F-spin angular
momenium L and total F-spin. The corresponding cep can be factorized into the £-
spin part and the angular momentum part. The F-gpin part of the CFP can be given
analytically [15]. and some of them are given in this paper. A recursion relation of the
angular momentum part is presented. This is not only useful to truncation but also
helpful to reduce the difficulty of calculation.

2. Classification of wavefunctions

The wavefunctions of a system with bosons of angular momentum / and Fspin 5 can
be classified according to the following group chain:

UMY (UMW) 0(V)20(3)) x SU(2) 2.1
where N=2{+ 1. Assuming

A
[ iml 2 (22&)

bmo' = bhn[/Zo’

which are the creation and annihilation operators of 2 boson with angular momentom
!, F-spin % and Z-components m, . Let

B =(—Y 12 o , (2.2B)
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Table 1. The generators, Casimir operators. IRRP labels and eigenvalues of the Casimir
operators for the groups in the group chain (2.1).

IRRP Eigenvalues of the Casimir

Group  Generators Casimir operators labels operators
UQN)  Br=@"8) Cruav=tp n a(n+2N—1)

Cataw=Ep BY- B
uw) pi=J2BY Caun=2%; P*- P* [r] ni(y + N — 1)+ nplnz + N=3)
o)y  Pi=.2BY Coon=Zkmoaa P** P*  (0101) (o) + N=2)+ aa(o2+ N—4)
Q(3) L=+ 1)N]/3E] Cooy=L-L L L(L+1)
SU)  F,=N/2B% Cosp=FF F F(F+1)

be the irreducible tensor corresponding to &,.-. The generators, Casimir operators, the
labels of the irreducible representations (1rRrps) and the ecigenvalues of the Casimir
operators for each subgroup in the group chain (2.1) are given in table 1.

The wavefunctions of the boson system can then be written as

|nfrins] floio2)al F)
UENYUN) O{N} O(3) SU2)

where 8, a are additional quanium numbers; the reason for including these additional
quantum numbers is that the reductions of U(N)=>O(¥N) and O(¥)>0O(3) are not
simple. According to the definition of equation (2.3), |n[nm:] B(o10:¢ L F) satisfies the
following relations: .

(2.3)

CZUZN
CZUN
Coon | [n(mmz) f(o102)cC LF)
CZO3
Casuz
[ n(n+2N—~1) i
n;(n; +N— 1) +n2(n2+N—3)
=1 oi{o+* N—-D+o{c2+ N—4)| [npum] B(oro2)aLF). {2.4)
LL+1)
| F(F+1). J

3. The branching rules of the reduction UZN) = (UV) 2 0(N)= 0(3)) xSUQRQ)

3.1. The reduction of U(ZN} o U(N) x SU(2)

The branching rule for this reduction is quite simple. It can be expressed as

r= Z [min] x F ) (3.1a)
i,z
where
n=n+n, Fl" (3.18)

2
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3.2. The reduction of U{N)>O(N)
By considering the Kronecker product of the irrps of group U(N)

(4] % [1s) = [y F e+ Ao~ 1, 1]+ . .+ [y (3.2)
where

7y =2
we get

[ =[] > fro] — [+ 1] X [n, = 1]. (3.3)

In the same way we find the relation between the Kronecker product of the 1RRPS
of group O(N) 26]:

()X (6} =(c1 + 1) x (¢’ = 1)+ )E (c—0'+a, a). (3.4)

a=0
Taking the branching rule for the totally symmetric 1rrps of group U{¥),
[A]l=()F -2+ (r—4)+. .. (3.5)

into account, we get the following recurrent relations of the branching rule of the
reduction U(N)=>O(N}):

[7,n]={n—2,n =21+ F(,n)~ F(n—1,n—1)
[r,n—~1]=F(n, n—1)

(3.6)
[rmina] = [ —2, nal + F(ny , 1)
where
Fny, nﬂ:?« (m—f+a,a)
B=m,m—2,m—4,..., >0 (3.7

e=8,p—1,8-2,...,0.

Using equations (3.6) and (3.7), all of the branching rules of this reduction can be
obtained. Some branching rules of the reduction U(N)=>O(N) are given in table 2.

3.3, The reduction of O{N) 2 0(3)

A method to obtain the branching rules for this reduction has been proposed by Wang
and Sun [27], and with use of the computer codes [28] all the branching rules were
obtained. Here we give the maximum values of the quantum number L for the IRrP
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Table 2, Reduction of U(N) 2 O(N).

[n] . neven

(n0) (rn—210) (n—4m 40) (20) (00)

[n—11]

(—20) (n—40) (n—160) 40 (z0)

(r=11) n-31 (r—51) Gn an (n

[n-22]

(n—20) (n—40) (n—6 0y (40 (20 (0 6)
th—=31) (n=51) (51} (31)
(n—22) (n—42) (62 42 22)

[n] » odd

(n0) (n—20) (n—40) (50 (30) (10

[r—1 [}

(n—20) (n—40) (n—60)--- G0y G0 (o

(n=11) (n=31) m-50)--~ 61) “n @0

[n—27]

(n—=20) (n—-40) (1—60P -~ - (507 (30 )
(=31 (=51 -—- 61) (41) zn
(n-22) n—42)-—- (72) (52) (32)

(o102) of the group O{N):
Lmax=(o-i +62)[— Ta. 7 (38)

It is well known that the reduction of the 1rrPs of a group is rather complicated, so
that 1he reduction should be checked for correctness. An efficient checking measure is
to compare the dimensions of the 1Rrps. The dimensions of the 1RRps of groups U(2N),
U(N}) and O(N) are given by the following formulae [26]:

dy =2 1)!
n2N=1)!
__ AN (AN
At +DIN—TH nml(N—2)! (m—n+1) (3.9)
doroga GV (@t N=9 o

T o DIN=2)1 oMV~

x(262+N“4)(G1+62+ N_3)(O'-|“0'2+ 1)

4, The wavefunctions |njmm] (o) e L F)

From the above discussion we see that, in order to label the wavefunctions completely,
seven parameters are needed, which are ny,m, 8, ¢i, 02, ¢, L. Using the boson
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operators {2.24) and (2.25), we obtain

C2U2N=ﬁl)(ﬁb +2N— 1) (4 1)
CZUN=% (l’lb +2N— 4) + 2F F (42)
Cron=4y(As+2N—6)+2F - F~2p' - p (4.3)

where

_ [N 3501
rl- f @iy, &
NI

are, respectively the creation and annihilation operators of the boson pairs. They are
the invariant guantities of group O(N), ie. they commutate with the generators of
group O{N). Therefore, we see that pl and 5, commutate with the Casimir operator of
O(N):

[Coons pa]1=0

[Coons Pu]=0. “3)

Consider the wavefunctions of v bosons [vv a L) which satisfly the following
equations:

ﬁ[; v

Plivwe L)y=| L+ |vwalf)

- (4.6)
Flo fU+1)

B 0

From equatxon (4.6) we see that any two of these v bosons cannot construct a pair.
Because p,, is the mvar:ant quantity of group O(N), |#[mn:] (o162) @ L F) can be
obtained by means of p, acting step by step on |vv a L o, e

|l 3} (0109) LF)=|nvfa L F)
=Clmnz B 016)8™{p. f17 v a LfHF
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wherte
v=g,+ 03

01— 03
2
n=wm+n=4g+2p+v

f—_—.
(4.72)

By —Hy

2

e

S'I'=p1'_p1' 1
pr={p"xpix. . xp'ie

and are p factors of p'.

1t is easy to show that [a{n m)B8(0102) @ L F) salisfies equation (2.4). The wave-
functions (4.7) are the complete set of # boson wavefunctions, but they are not ortho-
gonal to each other. The above discussion shows v is the seniority number, and fcan
be calied the reduced F-spin, i.e. the F-spin of the v unpaired bosons. The normalization
constant C(mnz f &,02) can be calculated for =1 in the usual way, and the results
are

(4.75)

ol (N+20,+2p— 2N
(N+2g,—2)I

C(H[O'g] O'[G'z) =
(4.8)

C(nlcrz+1 10'10'2)= (N+20' 2)"
a3 11

The wavefunction |vvL,..f> is the highest-weight state (r1ws) of the irRrP {0,032)
of group O(NV). It can be calculated as

—_ 1
H(6162) BWS) = | VYL > = T T2 D ptaspiior=ao gy (4.92)
(0'1 + 1)' a3l
where
N L T R @9%)

Using equation (4.9¢) we can obtain the HwsT of the IrRrP # of group U(2N) and that
of IRRP [ry, 112] of group U(N). They are

|n Hws) = \/,,Iu blt210) (4.10)

(ﬂ[ _?'[2+ I)I

BBl [0). 4.11
)it e o0 (4.11)

[[r21, #2] HWSD> =| (R 1) HWS) =

T The Hws is a simple state, and we omit the additional quantum number a as vsual.
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5. The crp

5. 1. Fuactorization

The crp for the bosons whose wavefunctions can be labelled by the group chain (2.1)
can be expressed in the second quantization representation as

(vfaLBFY{n—1 vif ' LBF y= \/-i{nvfampub* In—1vfa'LBFY (5.1)

where ¢...|8"[...) is the reduced matrix elementT of the irreducible tensor operator
bl [28]. It is easy to show that Al is the irreducible tensor with rank 1 under the
group chain (2.1), ie.
Bhe=b"1[11 (10) imic)
UQN) U(N) OWV) O(3) SU(2). (5.2)

Then, according to the generalized Wigner-Eckart theoremt the reduced matrix
element of .. can be factorized, with respect to the group chain (2.1}, as the following:

<m;faL,BF|[b*{|n-1v'f’a'L',3'F'>=J£[] "_,1 " ]

[1] [?1'11’12] [r#2]
[[1] [nin3] (i) M(I) (oioh) (0'10'2)] 53)
() Ploio | Blowo il I oL’ | aL '

where

[1 n—1 n ]
M [#x]|n »]

is the isoscalar factor of U(2N) > U(N),

[r21722] :|
B(oio2)

is the isoscalar factor of U(N)>O(N), and

[{1] fjn3
() Boioh)

[(1) (oioh)
! o'l

(0'102)}
al

t Here we use the formula
CLFIBTLIFy = ¥ LLMERIBL LM F KOShnL M LMo PR FES.

mal’
ok
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Table 3. The isoscalat factors of UQ2KN) = U(N).

[1 n=1 n ]= /G Dt~ o)
01 [u=1n] | [ (m +i){m—ma+1)
[ 1 n—1 n ]= { as(m —ne+2)

(1] [mpa=11 | [#ym] (+ar)(m—m 1)

Table 4. The isoscalar factors of U(N)2O(N).

Fly [n=11 [u]J fo(N+n+a-2)
L) (o-1) | (&) H(N+20—2)
Tt [—1 [;z]]ﬁ =) (N+a—-2)
(1) (e+1)} | (o) a(N+2c -2}
0] 1] [n—lr]]s [n=c) W +o=2)
LD (o—=1) (a) nN+20-2)
] [e—1] [rr+l]]= {o(N+n+o—2)
(1) {e+1) | (o) HN+26-2)
[[1] in—1] [n-l[]:]__l

o1y 1~

M (o}
[[I] [a—21] | [r=11]
(h (e=1} | (o}

\/(a— ) (N+o-2) (N+n+o—4)
=2} (N+a—-3}(N-+2ag-2)

L {(o+]1) n=2)(c+1)(N+206~12)

\/ (n—1) (N-2)
(m=2)(oc+1){N+c—-3)

(11} =211 | =11
L) (o) (o)

1 m-21 | (- 11]] \/a(n—cr—2)(N+0’—l}
(

] [v—21] [n—l[]]= (-1 e+ (-1} (N+tn+o-3)

LD (e—11) (cl) n(n—2Do(N +25—2)

Ml [—-21] [n—l[]:I=\/(n—l)(:z—cr—l)(N+cr—[)(N+o'—3) i
(L {o+11} | (a1} nn—2) (N+o—=2)(N+2c-2)

[[1] [r—21] ' [az—!l}:l= —o— 1) (Ntnte—3)
) {ol) wn=NaF(N+o—~2)

is the tsoscalar factor 6f O(N)=>0(3). The isoscalar factors of U(2N}>U(N) and
U(N)=> O(N) can be obtained by using the uws of the IrRrP [mm;] of group U{N) and
the IrRrP (g02) of O(N). The results are shown in tables 3 and 4.
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Table 5. Cocfficients (uvfBF{|n—Lv/"B'F'>.

(VfF} (vfF) (v/F)
- o yre=2 =22
voos F 23 2 2 2

v=1 f-p F-i JviN+n+v—2) (v— )N+ v—2UN+atr—4) \/v(v—2)(N+n+v—3)

n(N+2v=-12) (n=1)N+v=3N+2v-2) nlv—1N+2v—4)
veL SR P \/ (n— v)(N+n+v—4)
an—1Wv=1UN+v-1)
v+l f=3 F-i -2

(vHI}N+v-3)

1 3
v+l ftz  F—3 fn—v)(N +v—-2) \/ vin—v—2H{N+v-1) (= v)(N+v—2)(N+v—4)
n(n+2v—2} (n—1){e+1)¥+20-1) r(n+v—=3)}N+2v—4)

v=1 f-i F+i (= v+ v—2)

{r—1Hn+2v—2)

n—]
vl -t F+}
vl f+y Fii VIN+r+v—2)

nlr—1}n+2v=2)

The crFp shown in equation (5.1) can then be rewritten as

CvfaLBF{ln—1 v @ L'BFy=nvfBF{n—1 v B S vaLf{lvea'Lf"
1 n—1

where
n ][[11 GRS ]
f1] [ne] | [mp] (1) B'(ov02) | B(o02)

can be designated as the F-spin part of the cFp, and

(1) (otod) (O'no’z)]
! a'l’ al

{nvfBF{|ln—1V'BF =[

<vaLf{|V’a’L’f'>=[

(5.4)

(5.5)

(5.6)

can be referred to as the angular momentum part of the crr. The values of

{nvfBF{n—1 v B F with F=n/2 and (n—2)/2 are given in table 5.

5.2. Reciprocal velation

[t is easy 10 show that the boson operators By and b, are the (1) x1/2 rank tensor

operators of group chain (O(N)>0(3)) x SU(2), i.e.
Bhe=b" (1) Im o))
O(N) 0O(3) SU(_2)

bue=5((1) Im 10))
O(N) O(3) SU(2).

(5.7)

(5.8)
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According to the generalized Wigner-Eckart theorem, we have

((O'IO':)aLﬂ'IbTH(O':Gz)a’ﬂf')=<(0’10'2)ﬂ|b+“(0'|G%)f')[(l) (©102) “’""”]
i a'l’ al
and
otoDa L Wl (oronalsd
by (o -

=<(Gid£)f’li5||(cncrz)f>[( ) (e (‘;,Z)] (5.102)

Whe:_"e
(cio)=(o1—1 i) or (c1o2—1) (5.10%)

and <(c, )17 (oo, (o} o5 1E1(oioh)f> are the reduced matrix elerents of
group O(N) x SU(2). Using the relation

JOLFDTTT) (o102)alf|bT(cio)a L
= () E A RLFD (I F ) ' (5.11)
x {(cioD ' Lf |B| (ool

and the normalization of the isoscalar factors we obtain

{(oion) 15 ora)f

= (NS L2 d(oy03) (2f+1) I P “
(-) \/d—(oioé) (Zf__’+1) (ora)f 16 I(aiot)f > (5.12)
[(1) (0162) (cr;aa)}
[ al a'l’
oy \/d(cr;aa)(zul) [(1) (si(oD) (cr.crz)] 513)
dloo) QL'+ L | a'l al | '

Equation (5.13) is called the reciprocal rule of the isoscalar factor of O(&)>0(3).

5.3. The recursion relation

From the above discussion we see that the isoscalar factors O(N)=>0Q(3) satisfy the
following equation:

(1) (o102
{ a'l’

{o16)f 16N I(cte5)f "> [ (2:2)}=<vaLfllell v—la' L. (5.14)

Suppose the wavefunctions |v—1la’L'f", |lv—2¢"L"f", ... are known. We then
define the states

W (v[eiL £ L >={6"\v =1 aiLi f 1)} (5.15)
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The states [W(v[aiLl] f{1Lf)> have boson number #=v and seniority equal to either
v or v — 2. Therefore, they can be expanded as

I (vleiLi [y =A(v[eali fOLOvIen L fi14 )

+ 3 B(v[alLi f{1Lfa"L)|v v—2 a"f"Lf) (5.16)
a’f”
where |v[aiL! f{> means a state with definite seniority v and reduced F-spin f. The

additional quantum number [a} L] f/] , means that the states are oblained from the
parent states |¥(v[a) Li f{ILS)>:

1 o
LT (LS 1)

= ¥ BvleiLifLfa /v v=2 " f"Lf>}. (5.17)
[

|vlaili f{1Lf>=

From the orthogonality of the wavefunctions with different seniority or reduced F-
spin and by using the commutator of the pair annihilation operators p, and pair creation
operators PJ , we get

B(v[a'Lf'1Lfe"f")
=(vv=2a"f" LAIBIv—1v—1a} L} F>
(A \/ 6(2Li+1) 2fi+1)
QL+ 1) (Nt v—4+f(f+ D =f"(f"+1)
X{J;'-" 15, ;{}@—1 v=1 eiLi {16 v =2 v=2 L"), (5.18)
Let

R(v[aiLif{la'L'f"Lf)
= 3(alaVS(LIL)S(fif Y= (=) +EHS
¥/ QLI+1) 2L +1) (2f7 +1) (2 +1).

His e
P I L L'}z f f’
. (=) *i6s(LL)
L+ 1D [N+ v—4+f(f+ D) —F"(f"+1)]

A |
x{2 2 be1 2 ly—=Tv-1a{fiLil6"v—2v—2a"L'f">
{f” f s
x{v—1v=1a’ LB |v=2 v—=2a"L"f">. (5.19)
From eguations (5.17), (5.18) and (5.19) we get

AWV[@ LI ) =/ ROVIaiLi f (el f{ Lf ). (5.20)
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The recurrent formula for the reduced matrix element is
Covleili fLAG Iv—1 v—1 aiLif)
= RVt Lt e’ L LF )/ RIS L Rlel L fiLF).
From equations (5.14) and (5.21) we can obtain the O(N) > O(3) isoscalar factors

[(1) {0103) (o102) ]
I a'r | et
Of course, the states

(2)02)

[a'LfTL

are overcomplete and non-orthogonal. We can use an orthogonalization method, such
as the Schmidt method, to obtain the orthonormal complete states

(o102)
al
and the corresponding isoscalar factors

[(1) (oio)) (0'10'2)]
I a'l’ al, |

In order to make the orthogonal process more efficient, we use the multiplicity to
control it [29]. We begin the recurrence process with two bosons with a state of seniority
of two. The initial result of O{N)>0(3) isoscalar factors can be obtained by straight
forward calcufations:

[(1) (1) ‘ (20)]=1 L=0,2.4,...,2
! ! L '

[(1) (1) 1 (11)]=1 L=1,3,5,...,2— 1.
{ { L

From equations (5.21), using recurrence and orthogonalization repeatedly, we can
obtain any isoscalar factors of O(N') = O(3) numerically.

(5.21)

6. Conclusion

In summary, the classification of the wavefunctions of the boson system with single
angular momentum / and F-spin § and the branching rules of 1RRP reductions in the
group chain U(2N)=(U(N)>0(N)=0(3)) xSU(2) are discussed. The crp for the
boson system is factorized.into the F-spin part {nv/BF{{n—1 v!["v'F") and the angular
momentum part {sfaL{|s'f"a’L’>. An approach to evaluate these factors is provided.
A computer code based on the formulae has also been set up io determine the cFp of
.1BM2 [29]. We hope that this discussion will facilitate the 18M calculations and promole
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further discussions on superdeformed nuclei and the chaotic behaviour of many-boson
systems.
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