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Abstract. Wavefunctions of bosons each with angular momentum I and F-spin 4 areclassified 
according to thegroupchain U(2N)=(U(N)=O(N)=0(3)) xSU(2). The boson number, 
seniority, reduced F-spin, total angular momentum, and total F-spin quantum numbers are 
used to label the waveiunctions. The corresponding coefficients of fractional percentage 
(CTP) are factorized into F-spin and angular momentum parts. The F-spin parts are calcu- 
alted by an analytical ionnula and the angular momentum parts are calculated by recursion 
technique. The isoscalar factors oiU(2N)=U(N)=O(N) and the F-spin part of the CFP 
for the cases F=F,,. and F= Fma,- I are given explicitly. 

1. Introduction 

The interacting boson model (IBM) has been successful in describing nuclear structure 
[ I ] .  In its original version (IBMI),  which does not distingui-h the proton boson from 
the neutron boson, the three kinds of nuclear collective motion can be described quite 
well. After the development of IBMI, version IBMZ, which treats the proton boson and 
neutron boson separately, was proposed. Since then, remarkable progress has been 
made in both the theory and the agreement between the theoretical predictions and 
experimental data [2,3]. Now that the g-boson has been introduced, the well deformed 
nuclei and higher excited states can be described, and the nuclear octupole deformation 
is described by considering the f- and p-bosons 14-91, 

It is known that the coefficients of fractional parentage (CFP) [IO-131 method is 
one of the most efficient techniques for constructing the IBM wavefunctions. Even 
though much work has been undertaken in the study of nuclear physics, discussion of 
the CFP of I B M I  and especially the CFP of IBMZ has been relatively meagre. Since 
calculations of the CFP are quite time consuming, the working load of calculations for 
some computer codes in the framework of the IBM is tremendously heavy. Moreover, 
since CFP tables with large numbers of bosons are not available, calculations with large 
number of bosons are not possible. These defects have limited the application domain 
of IBM. Recently, Sun and collaborators have put forward a simple formula to calculate 
the CFP of IBMI 114, 151. A computer code based on the formula has also been set up 
to determine the CFP of IBMI [16]. This computer code is quite efficient: it takes only 
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20 minutes on the IBM 350 machimto obtain all the CFP for a system including 36 d- 
bosons. I t  provides us with a convenient way to describe the nuclear superdefonned 
states and chaotic behaviour of the boson system. 

In fact, as the nuclear physics can be discussed in the framework of the IBM, it is 
usually recognized that I B M ~  has a better microscopic foundation. It is certain that the 
proton boson and the neutron boson~should be treated separately in this case. However, 
the configuration space is enlarged remarkably. It increases the difficully of calculation 
greatly, so that practical applications are limited. In order to restrict the configuration 
space to a manageable size. it has usually to be truncated. If the wavefunctions are 
classified by more physical quantum numbers such as seniority or F-spin, the configura- 
tion space is easier to truncate physically. 

The F-spin. which for a boson system has a role similar to the isospin for fermions 
has proved to be a good approximate quantum number [17, IS]. However, it was also 
conjectured that some collective modes corresponding to the mixtures of states with 
different F-spin values could arise [ 191. The discovery of low-lying 1' states was believed 
to be strong support for this conjecture 1201. Since then the question of the purity of 
symmetry properties with the F-spin value=F,.,. has been studied quite extensively in 
the vibrational, rotational and y-unstable rotor limits [21-251. Nevertheless, most of 
the real nuclides lie in between the mentioned limits. Therefore, to carry out detailed 
calculations for such transitional nuclides a phenomenological model with a reasonably 
truncated model space is certainly needed. To construct n-boson wavefunctions with 
F-spin, the CFP with F-spin need to be calculated. 

I n  this paper, using the Lie group theory we discuss the classification of the wave- 
functions of a boson system with a single angular momentum 1 and F-spin 4 according 
LO the group chain U ( 2 N ) 3 ( U ( N ) 3 O ( N ) 3 0 ( 3 ) )  x SU(2).  These wavefunctions are 
simply those with a well-defined boson number, seniority, reduced F-spin angular 
momentum L and total F-spin. The corresponding CFP can be factorized into the F- 
spin part and the angular momentum part. The F-spin part of the CFP can be given 
analytically [ 151. and some of tbeni are given in this paper. A recursion relation of the 
angular momentum part is presented. This is not only useful to truncation but also 
helpful to reduce the difficulty of calculation. 

2. ~~assification of wavefunetions 

The wavefunctions of a system with bosons of angular momentum I and F-spin 2 can 
be classified according to the following group chain: 

I 

U ( 2 N )  3(U(N) 3O(N)=0(3)) x SU(2) (2.1) 

where N =  21 + 1. Assuming 

(2 .24  

which are the creation and annihilation operators of a boson with angular momentum 
I ,  F-spin 4 and Z-components m, D. Let 

&,,,=(-) b-t,l - a (2.2b) It r,+ 1 /2+ a 
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Table 1. The generators, Casimir operators. IRRP labels and eigenvalues of the Casimir 
operators for the groups in the group chain (2.1). 

21 

IRRP Eigenvalues of the Casimir 
Croup Generators Casimir operatom labels operators 

- .  ^ ^  

Csuz =E. F E F(F+ I )  

be the irreducible tensor corresponding to b,H,. The generators, Casimir operators, the 
labels of the irreducible representations (IRRPS) and the eigenvalues of the Casimir 
operators for each subgroup in the group chain (2.1) are given in table I .  

The wavefunctions of the boson system can then be written as 

ln[wd P ( ~ I ~ ~ L F )  

U W ) U ( N )  O(N) O ( 3 )  SU(7-1 
(2.3) 

where p, a are additional quantum numbers; the reason for including these additional 
quantum numbers is that the reductions of U ( N ) l O ( N )  and O ( N ) > 0 ( 3 )  are not 
simple. According to the definition of equation (2.3), ln[nln2] P(olazaL F) satisfies the 
following relations: 

3. The branching rules of the reduction U(Z/V)~(U(N)~O(N)~O(3)) x SU(2) 

3.1. The reduction of U(2N) U ( N )  X SU(2) 

The branching rule for this reduction is quite simple. It can be expressed as 
n= [ n l n ~ ] x F  ( 3 . 1 ~ )  

"l.nt 

where 
i t I  - nz 

2 
n =nI  + nz F=-, (3.Ib) 



22 

3.2. Tire d u c t i o n  of U(N) 3 O(N) 
By considering the Kronecker product of the t R w s  of group U(N) 
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[nl] x [nz]=[nl +nd+[nl +n2- 1, I]+. . .+[nln2] 
where 

n l 2 - n ~  

(3.2) 

we get 

[ n m ] =  In11 x [ n ~ l -  [ n ~  + 11 x [n2-  11. (3.3) 

In the same way we find the relation between the Kronecker product of the IRRPS 
of group O ( N )  [26] : 

S' 

(F) x (d) =(a1 + 1) x (0'- I) + c (0- d+ a, a). (3.4) 
e-(I 

Taking the branching rule for the totally symmetric IRRPS of group U(N), 

[n] = (n) + ( n  -2) + (n -4) + . . . (3.5) 

into account, we get the following recurrent relations of the branching rule of the 
reduction U(N)>O(N): 

[n, n]= [n-2, n-21 +F(n, n) -F(n-  1, n- 1) 

[n, n -  11 =F(n, n-  1) 
(3.6) . . .  

where 

Using equations (3.6) and (3.7), all of the branching rules of this reduction can be 
obtained. Some branching rules of the reduction U(N)IO(N) are given in table 2. 

3.3. The reduction of O(N) 3 O(3) 

A method to obtain the branching rules for this reduction has been proposed by Wang 
and Sun [27], and with use of the computer codes 1281 all the branching rules were 
obtained. Here we give the maximum values of the quantum number L for the IRRP 
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Table 2. Reduction of U ( N ) > O ( N ) .  
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[?!I 
01 0) 

[n-I I ]  
(n-20) 
(n-1 I )  

[n-2 21 
( n - 2 0 )  

In1 
(12 0) 

[n-1 I ]  
(n-20)  
(n-l  I )  
[ n - 2 2 ]  
( n - 2 0 )  

(n-20)  

(11-40) 
(11-3 1) 

( n - 4  0)’ 
(n-3 I )  
(n-22) 

( n - 2 0 )  

(n-40) 
( n - 3  I )  

(n - 4 0)l  
( n - 3  I )  
(It-22) 

(n-40) 

(n-60) 
(n-5 1) 

(n-60)’ 
(n-5 I )  
(n-42) 

(11-40) 

(12-6 0) - - - 
( n - 5  1) - - - 

(n-60)’--- 
(n-5 I ) - - -  
(n -4 2) - - - 

((rlc2) of the group O ( N ) :  

Lmax = (Dl + 02)i- c 2 .  

It is well known that the reduction of the IRRPS of a group is rather complicated, so 
that the reduction should be checked for correctness. An efficient checking measure is 
to compare the dimensions of the IRRPS. The dimensions of the IRRPS of groups U(2N), 
U(N) and O ( N )  are given by the following formulae [26] : 

( n + 2 N - 1 ) !  d(n) = 
n!(2N- l ) !  

4. The wavefunctions ~n~nln2~~(ulu2) a L F) 

(3.9) 

From the above discussion we see that, in order to label the wavefunctions completely, 
seven parameters are needed, which are n, ,  nz, p, (rl, (r2, a, L. Using the boson 
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operators (2.24 and (2.2&), we obtain 
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CZmN=&,(& + 2N- 1) 

C&= $fib($ + 2N-4) + 2?. @ 

CZoN=f??b(&+ 2N- 6) + 2@. $- 2pt . fi 

where 

Fv=$(btQo o u  

(4.4) 

are, respectively the creation and annihilation operators of the boson pairs. They are 
the invariant quantities of group O(N), i.e. they commutate with the generators of 
group O ( N ) .  Therefore, we see that p: and$,, commutate with the Casimir operator of 
O(N): 

(4.5) 

Consider the wavefunctions of v bosons I vv a Lf) which satisfy the folrowing 
equations: 

From equation (4.6) we see that any two of these v bosons cannot construct a pair. 
Because p: is the invariant quantity of group O(N), In[nlnz] (41c2) a L F )  can be 
obtained by means ofp; acting step by step on I vv a Lf), i.e. 

In[nl nJ ( Q ~ C ~ )  L F ) = l n  v f a  L F )  

= ~ ( n l n 2  B uluz)~~P{p.j?~ vv  a ~ f ) ~  
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where 

f=- 0 1 - 5 2  

2 

n= nI + n2 =4p + 2 p  + v 
(4.7a) 

(4.76) 

and are p factors of pt. 
It is easy to show that In[nl n2]P(olc2) a L F) salisfies equation (2.4). The wave- 

functions (4.7) are the complete set of n boson wavefunctions, but they are not ortho- 
gonal to each other. The above discussion shows v is the seniority number, and f can 
be called the reduced F-spin, i.e. the F-spin of the v unpaired bosons. The normalization 
constant C(nln2 p o ~ o ~ )  can be calculated for P= 1 in the usual way, and the results 
are 

(4.8) 
p! (N+2Ul+  2p  - 4)!! ( N +  0 1  + 0 2 -  2 )  

(N+2m1-2)!!  

C(nlo21 0 1 0 2 )  = 

C(n,uz+l  1ola2)= 

The wavefunction I v v L , ,  f) is the highest-weight state (rrws) of the IRRP (01u2) 
of group O(N) .  It can be calculated as 

where 

(4.9b) 

Using equation (4 .9~)  we can obtain the nwst of the IRRP n of group U ( 2 N )  and that 
of IRRP [nl,  nzJ of group U(N). They are 

r 

(4.10) 

t The HWS is a simple slate, and we omit the additional quantum number a as usual. 



26 

5. The CFP 

5.1. I;ucturiratiuii 

The CFP for the bosons whose wavefunctions can be labelled by the group chain (2.1 j 
can be expressed in the second quantization representation as 

If 2 Sun et a1 

(nvfaLpF{ln- 1 vTa‘PPF’)= -(nvfaLPFllb+lln- 1 v ’ f ’ a ’ ~ ’ ~ ‘ ~ ‘ )  (5.1) d 
where (. . .Ilbtl/ . . .) is the reduced matrix element? of the irreducible tensor operator 
bt,, [28]. It is easy to show that b?,,, is the irreducible tensor with rank 1 under the 
group chain (2.l), i.e. 

b,’.,=bf(l[II (1  0) [ n t f c )  

U ( 2 N )  U(N) O ( N )  O(3) SU(2). (5.2) 

Then, according to the generalized Wigner-Eckart theorem? the reduced matrix 
element of bl,, can be factorized, with respect to the group chain (2.1j, as the following: 
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Table 3. The isoscalar factors of U(2N) 3 U(&'). 
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Table 4. The isoscalar factors of U(N) =O(N). 

( U - I )  ( N + u - 2 )  ( N + n + u - 4 )  
(ti-2) ( N + u - 3 )  (N+2u-2)  

u(n-U-2 )  (N+u-I) 
n-2) ( U + l )  (N+2u-2)  

I )  (u+l) (0 -1 )  (N+n+o-3) 
n(n-2)a(N+2u-2) 

is the isoscalar faclor bf O ( N ) 3 0 ( 3 ) .  The isoscalar factors of U ( 2 N ) 3 U ( N )  and 
U ( N ) 3 O ( N )  can be obtained by using the HWS of the IRRP [nln2] of group U ( N )  and 
the IKKP ( c T , D ~ )  of O ( N ) .  The results are shown in tables 3 and 4. 
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Table 5. Coefficients (irvfBF(1n- IvYP'F') 

( v J F )  
"-2  n - 2  

2 2  
Y-- 

( v -  I ) ( N + v - Z ) ( N + n t v - 4 )  
( n -  I ) ( N + v - 3 ) ( N + Z  " -2 )  n(v -  I ) ( N + 2  " - 4 )  

" ( E -  I)("- 1)(N+ " - 3 )  

v - I  /+; F-i  

n - v ) ( N + v - Z ) ( N +  "-4) 
n(rt t v -  3 ) ( N +  2"-4) 

" + I  / t f  F-f 

"-1 f-f F+f 
n- I)[u+l)(Nt20-1)  

n- I)(n t Z V - 2 )  

The CFP shown in equalion (5.1) can then be rewritten as 

(nv/aLPF{ln- 1 v[f'a'L'P'F'}=(nvfPF{ln- 1 v'f'P'f"(vaLf{.f(lv'a'L') (5.4) 

where 

can be designated as the F-spin part of the CFP, and 

can be referred to as the angular momentum part of the CFP. The values of 
(nvfPF{ln- 1 v'f'P'F) with F = n / 2  and (n-2)/2 are given in table 5. 

5.2. ~eci1 , rocd  relation 

I t  is easy lo show that the boson operators bi,, and 
operators of group chain ( O ( N )  zO(3)) x SU(2), i.e. 

are the (1) x 1/2 rank tensor 

&!,,=bt ( ( I )  Im 40)) 
O ( N )  O(3) SU(2) 

&,,u=K((1) If72 iff)) 
O ( N )  O(3) SU(2). 
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According to the generalized Wigner--Eckart theorem, we have 

(5.10~) 

where 

and the normalization of the isoscalar factors we obtain 

Equation (5.13) is called the reciprocal rule of the isoscalar factor ofO(N)30(3). 

5.3. The recursion relation 

From the above discussion we see that the isoscalar factors O ( N ) 3 0 ( 3 )  satisfy the 
following equation: 

Suppose the wavefunctions I v -  la'L'f'>, I v-Za"LT) ,  . . . are known. We then 
define the states 

I Y ( v [ c z ~ L ~ ~ ~ I L ~ ) = { ~ ' ~  V -  I aiLifi)}". (5.15) 
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The states lul(v[a;Lif;]Lf)) have boson number n= v and seniority equal to either 
v or v-2. Therefore. they can be e8panded as 

H 2 Sun el a1 

IY(v[a;L;fl'lLf)=~~v[a;L;fl'l~f)Iv[a~L;fl'lLf.f> 
+ B(v[a~LIfI ']Lfa ' 'L ' ' ) l~  v -2a" f"Lf )  (5.16) 

where [v[a{Li  f i) means a state with definite seniority v and reduced F-spinf: The 
additional quantum number [a {  Lif;] , means that the states are obtained from the 
parent states IY(v[a; GfllLf)):  

07 '  

- B(v[a~L;f , ' ]Lfa"f ' ' ) lv  v-2 a"f"Lf)}. (5.17) 

From the orthogonality of the wavefunctions with different seniority or reduced F- 
spin and by using the comniutator of the pair annihilation operatorsp, and pair creation 
operators p: , we get 

B( v[a'L'']Lfa''f'') 

0 7 "  

= ( v  v -2  ay"  Lfllb'llv- 1 v-  1 a; Li Pi) 

I + [ , +  L'i f +/"+ I 6(2LI + 1) (2f;+ 1) 
(2L+1) ( N + v - 4 + f ( f + l ) - f " ( f " + I )  = (-) 

X [ ] } ( v - l  v-1 ~ i L ~ f ; ~ ~ b + ~ ~ v - 2 ~ - 2 a " ' L ' i f " ) .  (5.18) 
Y f f ;  

XJ(2Llfl) (2L'+I) ( 2 f ; + I ) ( 2 f + l ) .  

[i' L" Li}[f ; ;} 
o"c;,* I L L' 

(-Y+'66(LL") + 
(2Lf l )  [ N +  v-4+f(f+l)-f"(f"+1)] 

X(v-1  v - 1  a'Lyllb+llv-2 v-2a"L"f"). (5.19) 

From equations (5.17), (5.18) and (5.19) we get 

A(v[a'L'f ']Lf)  = J R ( v [ a l L i f ; ] a i L i f ;  Lf). (5.20) 
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The recurrent formula for the reduced matrix element is 

(v~ [~ i~ i , f i . ]~ f l jb+ l l~ . -  I V- I aiLifi) 

= R( vlai~; fila’~i7 ~ f ) / J ~ ( ~ [ a i ~ i f ; l a \ ~ ;  f i ~ f ) .  

From equations (5.14) and (5.21) we can obtain the O(N) 10(3) isoscalar factors 

(1)  ( 0 1 0 2 )  ( Q I d  [ I a r c  1 la’cy]Ll. 

llh;;;L> 

i‘:3 
[ i 

Of course, the states 

are overcomplete and non-orthogonal. We can use an orthogonalization method, such 
as the Schmidt method, to obtain the orthonormal complete states 

and the corresponding isoscalar factors 

arc I aL 1- (1) (cl09 ( 0 1 % )  

In order to make the orthogonal process more efficient, we use the multiplicity to 
control it [29]. We begin the recurrence process with two bosons with astate of seniority 
of two. The initial result of O ( N ) 3 0 ( 3 )  isoscalar factors can be obtained by straight 
forward calculations : 

(5.21) 

From equations (5.21), using recurrence and orthogonalization repeatedly, we can 
obtain any isoscalar factors of O ( N )  3 O(3) nutnerically. 

6. Conclusion 

In summary, the classification of the wavefunctions of the boson system with single 
angular momentum I and I?-spin $ and the branching rules of IRRP reductions in the 
group chain U(2N)3(U(N)30(N)30(3) )  x SU(2) are discussed. The CFP for the 
boson syslem is factorizcd.into the F-spin part (nvfDF{IR- 1 v’f’v’li‘) and the angular 
momentum part (sfaL[ls‘f‘a’L’). An approach to evaluate these factors is provided. 
A computer code based on the formulae has also been set up io determine the CFP of 
IBMZ [29]. We hope that this discussion will facilitate the IBM calculations and promole 
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further discussions on superdeformed nuclei and the chaotic behaviour of many-boson 
systems. 

H 2 Sun et a1 
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